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Perceptual categories for spatial layout

DANIEL KERSTEN

N218 Elliott Hall, Psychology Department, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, USA

SUMMARY

The central problems of vision are often divided into object identi¢cation and localization. Object identi¢-
cation, at least at ¢ne levels of discrimination, may require the application of top-down knowledge to
resolve ambiguous image information. Utilizing top-down knowledge, however, may require the initial
rapid access of abstract object categories based on low-level image cues. Does object localization require a
di¡erent set of operating principles than object identi¢cation or is category determination also part of the
perception of depth and spatial layout? Three-dimensional graphics movies of objects and their cast
shadows are used to argue that identifying perceptual categories is important for determining the relative
depths of objects. Processes that can identify the causal class (e.g. the kind of material) that generates the
image data can provide information to determine the spatial relationships between surfaces. Changes in the
blurriness of an edge may be characteristically associated with shadows caused by relative motion between
two surfaces. The early identi¢cation of abstract events such as moving object/shadow pairs may also be
important for depth from shadows. Knowledge of how correlated motion in the image relates to an object
and its shadow may provide a reliable cue to access such event categories.

1. INTRODUCTION

Determining the identity and spatial location of objects
are often cited as the two great divisions of problems in
vision. The challenge in either division is how to deal
with the enormous variability in the image for various
occurrences of an object, or spatial arrangement of
objects. Much recent work in object recognition has
focused on how to cope with variation in viewpoint
(Biederman 1987; Bu« ltho¡ & Edelman 1992; Tarr &
Bu« ltho¡ 1995) and in illumination (Adini et al. 1995;
Hallinan 1995; Tarr et al. 1997). But vision has to deal
with more than variability in illumination and view-
pointödue to the fact that the image is a complex
function of all of the scene variables. A particular
visual task requires the estimation of useful subsets
of scene parameters, leaving the remainder as
confounding variables. Unravelling the causes seems
even more complex when one realizes that some scene
causes, such as light source position or the location of a
shadow casting object, can produce large changes
distant from the corresponding region in the image, in
contrast to other changes such as shape or material
which produce primarily local changes in the corre-
sponding region of the image. Dealing with variability
is also di¤cult because almost any given image
measurement seems to be ambiguous about its cause in
the scene.

A careful analysis of visual task requirements
provides part of the solution to the dilemma of
complexity and ambiguity. Speci¢cally, one should
seek out image measurements that are appropriate to
the visual task at its level of abstraction. This notion

is familiar to theories of recognition, although robust
image measurements supporting task-speci¢c classi¢-
cation have been hard to come by. For example,
¢nding an object `key' is a crucial ¢rst step in the
recognition of speci¢c objects using alignment
(Ullman 1996), and serves to select potential object
models to test whether they can be transformed to ¢t
the image data. The invariant features of g̀eons' were
proposed as reliable indicators of the qualitative shape
of parts and their relationships, well-suited to entry-
level recognition of object classes rather than speci¢c
instances (Biederman 1987).

Cavanagh (1991) has suggested that although edge
maps confound shadows with illumination-invariant
features, they may nevertheless be reliable enough to
access the prototype for a human face, with that and
other knowledge subsequently brought to bear to
discern the speci¢c face. Schyns & Oliva (1994) have
suggested that coarse scale spatial information may
provide diagnostic information for scene recognition.
One consequence of such strategies is that not all
image edges have to be parsed into their respective
causes in the scene (i.e. whether they are shadows,
specularities, material changes or occlusions) for useful
visual decisions.This has led to a revival of appearance-
based algorithms in computer vision (Murase & Nayar
1995). In general, we see a common theme that certain
image measurements provide useful features for object
categories at di¡erent levels of abstraction. A ¢rm deci-
sion about a perceptual category has the potential to
reduce ambiguity which can then be resolved with
other sources of knowledge. Are categories also useful
for determining object location?
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Spatial relationships between objects can be speci¢ed
by visual direction and depth. Visual direction is
related to retinal position in a straightforward way
whereas depth is less direct.Vision uses depth informa-
tion both for orientation and shape within surfaces
(derivatives of depth), as well as relative position
between surfaces. In this paper we consider depth
between surfaces. Both stereo and motion parallax
provide information about relative depth in terms of
di¡erences in retinal positions over space and time,
but perception is also able to make reliable inferences
about spatial relationships from the pictorial cues.
Human vision shows interactions between a number of
pictorial cues and the more `direct' information from
stereo and motion. These interactions have been docu-
mented for occlusion and stereo (Nakayama et al. 1989),
transparency and stereo (Trueswell & Hayhoe 1993),
and transparency and structure from motion (Kersten
et al. 1992). For shape, there are interactions between
stereo and shading (Bu« ltho¡ & Mallot 1988), texture
and stereo (Johnston et al. 1994), and texture and
motion (Landy et al. 1995). Below we look in detail at
the interaction between cast shadow information for
depth and motion between surfaces, and show that reli-
able inferences of depth require the resolution of
ambiguity of the causes of intensity change. It is
argued that this resolution, like that for object recogni-
tion, may also take advantage of image measurements
that are reliable for perceptual categories at various
levels of abstraction. In particular, we will look at how
the identi¢cation of material category is related to
shadow labelling, and how identifying object/shadow
event categories may explain the robustness of percep-
tion of depth from shadows.

Below, we will ¢rst examine the relationship between
scene complexity and tasks, and in particular get an
overview of how a visual task determines the division
of the explicit and implicit (or generic) variables that
contribute to the image. Here the importance of robust
image features for a visual task will be stressed. Then,
several experiments involving the perception of depth
from moving cast shadows will be described. An
analysis of the visual decisions to resolve shadow ambi-
guity illustrate the theoretical ambiguities in
apparently unambiguous scenes. The subsequent
section will argue that both local and global image
features determine the perceptual categories that are
useful for determining object trajectory using cast
shadow information.

2 . SCENE COMPLEXITY AND VISUAL
TASKS

In addition to determining object identity and loca-
tion, seeing solves other problems such as identifying
object material properties, object classes, con¢gurations
of objects and events. In doing this, vision does more
than discount variability in viewpoint and illumina-
tion. Di¡erent visual tasks require a more explicit
representation of some classes of scene parameters
than others. Because the image at the eye is a function
of all of the scene variables, it is important to consider
both the variables relevant to the visual task (the

èxplicit variables'), as well as the confounding vari-
ables not relevant, but which nonetheless contribute to
variability in the images received (the g̀eneric vari-
ables', cf. Freeman (1994)). Identifying the appropriate
scene parameters to estimate, and those to discount
constrains the kinds of image measurements that are
reliable for those explicit variables. One classi¢cation
of scene variables that are useful for several tasks is
shown in ¢gure 1. The choice of classes of scene para-
meters is characteristic of those found in three-
dimensional (3D) computer graphics programs
(Kersten 1997). A typical computer graphics system
would employ an object modelling module that could
have the following three components: a shape editor to
specify the geometry; a material editor to specify what
the object is made of at a texture scale ¢ner than the
object, and articulation tools to control, for example,
the joints in the human body. Articulation parameters
could also include those required to model variation
over facial expression, or the shape changes in a soft-
sided brief-case. A computer graphics system would
also have separate components to position the objects
relative to each other, and set the camera and light
positions. It is no doubt a matter of debate as how best
to partition and prioritize the scene variables, but the
classes used by graphics animators seem to provide a
natural and useful classi¢cation.

Vision's job, of course, is to do something with the
image data received. In particular, the job of visual
perception is to make explicit the scene parameters
appropriate for a task, despite the variations in the
image caused by the generic variables. Two broad
distinctions are tasks involving single objects (object
perception) and tasks requiring information about the
relationships between objects and/or the viewer (¢gure
1). An example of a subtask for object perception
(discussed above) is entry-level recognition, where
shape may be the crucial information to make explicit
(Biederman 1987). Other contributions such as material
or articulation variation need to be discounted at some
level, perhaps only to be explicitly estimated if ¢ner-
level discriminations are required. Spatial layout tasks
can be distinguished based on whether an observer-
centred or world-centred representation is most useful.
Spatial layout subtasks for which viewpoint is generic
include spatial planning and scene recognition, and it
is in this context that we will discuss depth from cast
shadows.

In actual practice, the division between explicit and
generic may not be entirely clear for a task. For
example, material category may be important for
some entry-level recognition decisions. Further, mate-
rial classi¢cation is a useful task in its own right (e.g.
picking matching clothing). One can soften the bound-
aries between explicit and generic variables using
statistical decision theory to weight di¡erentially the
loss of getting bad estimates of the scene parameters
(Yuille & Bu« ltho¡ 1993; Freeman & Brainard 1995).
The extent to which human vision actually achieves
invariance over a generic variable is an experimental
question. Departures from ideal invariance provide
clues as to the mechanisms of perception (e.g. view-
point and illumination dependency in object
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recognition (Bu« ltho¡ & Edelman 1992; Tarr & Bu« ltho¡
1995; Tarr et al. 1997).

Note that the one variable that is generic across all
tasks is illumination. A consequence of this is that a
general-purpose visual system can begin to discount
some of the e¡ects of illumination, such as variation
over the mean level, right at the input. Other e¡ects,
such as shadows or highlights, may be more di¤cult to
discount, and may in fact be useful (Tarr et al. 1997).
Earlier we noted that viewpoint variation poses parti-
cularly challenging problems for object recognition.
But viewpoint is also a problem for certain aspects of
depth perception. Viewpoint is an explicit variable for
determining viewer^object relations, but a generic
variable for determining relationships between objects,
as well as for shape. Later we will exploit the genericity
of viewpoint in an analysis of what may constitute a
reliable feature for determining the presence of an
object and its cast shadow.

(a) Perceptual categories

A profound problem of vision is how knowledge
about image behaviour can be integrated with know-
ledge regarding scene structure to enable reliable
inferences. Computationally, we now know how to
integrate image constraints and prior knowledge for
the ¢ne-grained estimation of scene parameters for
certain well-de¢ned vision tasks (e.g. surface orienta-
tion, optic £ow and re£ectance, (cf. Clark & Yuille et
al. 1990). Perhaps a more di¤cult problem is to
understand how to identify more abstract classes or
categories of scene properties from image measure-
ments. The power and £exibility of human vision may
arise through its ability to organize prior knowledge of
the world into useful categories, and make reliable
inferences about these categories at multiple levels of
abstraction.

Categories can be de¢ned in terms of a set of
instances that are associated with a common label. A
crucial decision is whether to represent instances in
terms of image features or scene properties. Here we
assume categories are de¢ned in terms of scene proper-
ties, because it is the properties of scenes that are useful
for visual function. An economical way of representing
a set of instances is in terms of a prototype together
with some rules for allowable transformations. An eye
can be characterized in terms of the mean values of a
set of spline points representing explicit variables for
points of high curvature, together with some model of
variation about those points (Yuille et al. 1988). For the
purposes of this paper, I would like to use an intuitive
notion of a category as a label that tags a range of
scene-variable properties together with some rules that
specify how that category relates to other aspects of the
scene. Categories useful for depth could include opaque
surface, transparent surface, shiny surface and cast
shadow. An opaque surface can have any re£ectance
value, but the critical property is that it occludes light
from surfaces that are behind. A cast shadow is darker
than the surround, should be coplanar with its
receiving surface, and have a companion casting
surface. There are also categories of events (Jepson et
al. 1996) that may be useful for depth perception.
Examples include states of rest or motion of an object,
the interaction between objects, immanent contact
with the viewer or a moving object/shadow pair.
For a perceptual category to be useful for vision,

there must be image measurements or features that
reliably support the inference of the category. The
features indexing the category must be robust with
respect to the generic variables in the sense that large
changes in the generic variables should have little
e¡ect on the image features supporting the category
hypothesis (cf. Freeman 1994; MacKay 1992). An
important aspect of categories that will not be
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visual tasks
image data � f(shape, articulation, material, illumination, viewpoint, relative position)

object perception spatial layout

object-centred world-centred observer-centred

recognition
scene recognition/
spatial planning action

entry-level subordinate-level reach grasp

(a) explicit variables shape shape relative position viewpoint shape
material
articulation? articulation

(b) generic variables shape shape
articulation articulation articulation
material material material material
illumination illumination illumination illumination illumination
viewpoint viewpoint viewpoint viewpoint
relative position relative position relative position relative position

Figure 1. Task-dependent classi¢cation of scene variables.
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addressed is their overall structure, which involves a
balanced trade-o¡ between maximizing the di¡erences
between classes, while minimizing the di¡erences
within a class (Bobick 1987).

3. DEPTH FROM MOVING CAST
SHADOWS

We are usually sure (enough) of what we seeö
whether an object is in front or behind another, or
whether it is headed this way or that way. This section
describes simple computer-synthesized movies of 3D
scenes involving moving objects and their cast
shadows. The movies usually have an unequivocal
perceptual interpretation, despite the fact that, in
theory, there are alternative scene constructions that
could have produced the same image data. An advan-
tage of computer graphics is that while the images are
realistic and complex, there is su¤cient simplicity to
analyse the theoretical ambiguities of material, location
and movement.

(a) Square-over-checkerboard shadow movies

The ¢rst movies consisted of a stationary central
square in front of a checkerboard, and a shadow
moving diagonally and away from and then towards
the square (¢gure 2, top panel; Kersten et al. (1996))
Using orthographic projection, the size and position of
the square were ¢xed in time relative to the back-

ground. By keeping the square a constant size in the
image, the motion cues of object expansion and
contraction indicated no motion in depth. Assuming a
general viewpoint, the lack of any translational motion
of the square in the image provided further evidence
that the square was stationary in 3D. In fact, requiring
robustness over viewpoint as a generic variable says
that the square should be coplanar with the checker-
board. The cast shadow was generated either with an
extended light source (like a £uorescent panel) or with
a point source. An extended light source at a ¢nite loca-
tion produces a penumbra that gets fuzzier as the
square gets further away from the background.

Despite the presence of strong cues to stationarity, all
observers who viewed the movie with a fuzzy shadow
reported an initial strong perception of a square
moving in depth. When the shadow boundary was
sharp, some observers reported seeing the target
square move back and forth in depth; other observers
report seeing a dark patch sliding back and forth
across the checkerboard background. Below, I will
return to the reasons for this perceptual ambiguity.
There are several conditions that facilitate apparent
motion in depth: (i) a penumbra which gets more
blurry (as the square rises o¡ the surface) is better
than a sharp shadow; (ii) a dark shadow is better than
a (physically unnatural) light one (Kersten et al. 1997);
and (iii) a shadow below the square is better than one
above the square (Kersten et al. 1996).We will return to
the importance of a dynamically changing shadow
penumbra.
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Figure 2. The top panel illustrates the four conditions for the square-over-checkerboard experiment in which the shadow
was (from left to right): (i) blurry and below the square; (ii) blurry and above; (iii) sharp and below; and (iv) sharp and
above (details in Kersten et al. (1996)). The central square was stationary, while the shadow moved diagonally as illustrated
in the upper left. Observers report the central square to apparently move away from the checkerboard as the shadow moves
away from the square. The percept is strongest for a blurry shadow below the square (condition on the upper left) (adapted
from Kersten et al. 1996). The bottom panel illustrates the two main conditions of the ball-in-a-box movies. The ball
repeated its motion back and forth between its left- and right-most positions in the image. The shadow moved so that it
remained vertically below the ball in the image. Only the distance between the shadow and the ball varied as the shadow
and ball moved. The shadow had either a horizontal trajectory (lower left) or a diagonal trajectory (lower right). The ball
had a ¢xed size in the image and the same trajectory in both cases. Observers were asked to indicated the ball's height at the
right-most portion of the trajectory using a cursor on the right-hand wall (details in Kersten et al. (1997)). Observers report
seeing the ball rise above the £oor of the box in a fronto-parallel plane for the horizontal shadow trajectory (lower left), and
move across the £oor to the back of the back for the diagonal shadow trajectory (lower right).
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(b) The ball-in-a-box shadow movie

The square-over-checkerboard experiment provided
a strong test of the strength of moving cast shadows as
compared with motion cues for depth change. The fact
that sharp shadows were not as e¡ective as fuzzy
shadows suggests that the general viewpoint constraint
was strong enough to rule out the assignment of
s̀hadow' category to the dark patch. Therefore, we
might ¢nd an even more robust e¡ect of moving cast
shadows if we eliminate the accidental view. This was
done in 3D graphics simulations (¢gure 2, lower
panel), in which a ball moved inside a box in such a
way that it followed a diagonal trajectory in the image
plane (Kersten et al. 1997). The shadow boundary was
always sharp (from a point light source at in¢nity).
The size of the ball's image remained ¢xed throughout
the movie. There were two di¡erent movie sequences.
In the ¢rst, the ball's cast shadow followed a horizontal
trajectory in the image; in the second, it followed a
diagonal trajectory identical to that of the ball's image.
Despite the fact that the ball's image remained the
same size and had an identical trajectory in the image
plane in both movies, all observers saw the ball rise
above the checkerboard £oor when the shadow trajec-
tory was horizontal, and recede smoothly in depth
along the £oor when the slope of the shadow trajectory
matched that of the ball. In several experiments
Kersten et al. (1997) found that (i) the observer's
settings of apparent ball height are consistent with a
¢xed, but ¢ctitious light source position which varied
between individuals; (ii) nonlinear shadow motion can
induce an apparent nonlinear ball trajectory; and (iii)
changing shadow shape, opacity or contrast do not
measurably a¡ect motion in depth from moving
s̀hadows'.
The last point is illustrated in ¢gure 3. Several

manipulations of shadow contrast and opacity had no
e¡ect on observers' settings of apparent height of the
ball as a function of shadow trajectory. These observa-
tions stand in contrast to those obtained for the
interpretation of shadows in static images, which show
that similar manipulations of shadow brightness and
contrast strongly interfere with shape perception
(Cavanagh & Leclerc 1989).Why are the ball-in-a-box
percepts of motion in depth so robust over variations in
shadow properties? We return to this question later. But
¢rst, let us examine the theoretical ambiguities present
in the square-over-checkerboard movie.

4 . KNOWLEDGE REQUIRED TO
RESOLVE SCENE AMBIGUITY

For a given individual, there is little subjective ambi-
guity about the trajectory of the objects in the shadow
movies. What is not immediately apparent is that even
when a scene is complex enough to provide a rich set of
cues for spatial layout, there is a large set of ambiguities
that must be resolved. How does perception come by its
con¢dence?

Let us take a closer look at alternative physical scenes
that could have produced the square-over-checker-
board movie (¢gure 4). Consider ¢rst the kinematic

information, and note that shadow displacement can
either be caused by movement of the light source or of
the target square. One way to resolve this ambiguity is
to incorporate a priori knowledge that light sources are
much less likely to be moving than the objects they illu-
minateöa s̀tationary light source constraint'. Some
other interpretations are contingent on knowledge
regarding material properties of regions in the image.
For example, the dark shadow-like square could
instead be a transparent surface ¢lm in front of the
checkerboard, which is what observers often report
when the shadow has a sharp edge. The image is also
consistent with a scene in which the dark square,
rather than being a shadow, is an opaque surface
behind a transparent checkerboard. Even the change
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Figure 3. The original, natural shadow (left), followed by
two shadow substitutions, a (physically unnatural) light
`shadow', and a patch with the opposite contrast of a trans-
parent surface or shadow. The X-junction intensity
relations on the left-most panel are consistent with natural
shadows. The shadow substitutions behave like natural
shadows and have no measurable e¡ect on observers'
settings of the apparent height in the ball-in-a-box experi-
ments (¢gure 2, bottom panel).

Potential
light source
directions

Eye

Potential
object locations

Potential
"shadow" locations

Background

Figure 4. The possible spatial relationships between
background, target square, dark `shadow' patch and light
source at a given moment. Without knowledge of the
material properties of the `shadow' and background (the
dark `shadow' patch could be due to an opaque surface
behind a transparent background or an opaque surface in
front of the background), the position in depth is ambiguous
(thin stippled rectangles). If the dark region is known to be
a shadow, then it is constrained to lie on the background
(thin solid rectangle). Even if the position of the shadow is
known, the position of the target square and light source
direction are ambiguous (stippled rectangles and dashed
lines). A commitment to the light source direction (solid
line) speci¢es a depth for the target square (thick solid
rectangle). Conversely, knowledge of the depth of the
target square constrains the light source direction.
(Reprinted from Kersten (1997).)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


in the degree of blur at the shadow edge, instead of
being a penumbra, could, in theory, be due to the dark
square falling outside the depth-of-¢eld of the eye (no
observers have reported this percept). A visual decision
regarding the material (transparent, opaque surface or
shadow) a¡ects more or less how the motions are seen.
Kersten et al. (1992) reported a movie with a bistable
percept of apparent rigid or non-rigid motion of two
square planar overlapping surfaces. The type of
motion perceived (rigid or non-rigid) was contingent
on which of the two surfaces appeared to be trans-
parent.

In the next couple of sections we will take a closer
look at local and global information that support the
resolution of shadow ambiguity. But ¢rst, let us consider
the visual decisions regarding shadow identi¢cation in
a broader context of spatial layout.

(a) Spatial layout: levels of abstraction, categories
and visual decisions

Think of a complex scene as a play at the theatre.
Two main components to sort out are the stage set
(context) and players (objects). At any given moment
there is usually one player in the lead which captures
the focus of attention. There are also light sources,
visible props and invisible stage-hands. The ¢rst ques-
tions address categorical decisions regarding the
properties and general identities of the players. To be
speci¢c, consider the square-over-checkerboard.

(i) Context decision
One of the ¢rst decisions to be made is: which of the

objects provides the context with which to interpret the
spatial layout of the other objects? which is the stage?
This question is directly related to the visual task. A
particularly critical choice is whether the objects
should be represented in a world-centred or observer-
centred frame of reference. Viewpoint is a generic
variable for deciding whether the square is headed
away from the checkerboard. Viewpoint is an explicit
variable if the task is to reach to the square. Let us
assume that the checkerboard provides a world-
centred frame of reference useful for spatial planning.
Note that the decision to measure motion with respect
to the checkerboard is not without theoretical ambi-
guity. Perceptually the checkerboard is a suitable
stationary frame of reference; however, under ortho-
graphic projection, it could have moved along the line
of sight while the target square remained stationary.

(ii) Player category decision
The most salient players are the central square, the

checkerboard background and especially if seen as an
independent `thing' itself, a dark transparent patch.
These are the explicit `players' ordered according to
my guess of salience, where the central square is the
lead player. But there are implicit elements (`stage
props') as well. Phenomenally, a fuzzy faint shadow
can in£uence scene structure, but be barely notice-
ableöafter all, it is not a surface inviting action or
attention. Light sources are not usually explicit

players, but their stage properties certainly are mani-
fest in how images are interpreted (a shadow above
the object is less e¡ective in producing apparent 3D
motion than a shadow below). Below, we discuss the
image measurements that support decisions about the
object material category.

(iii) Motion event category decision
Given the checkerboard as reference frame, the

visual system can make some categorical decisions
about the motion class itself. We have several possible
categories of motion to choose from for the moving
square. Natural choices would be stationary,
constrained to move within the plane of the checker-
board or moving in depth. Image information would
seem to rule out all but the ¢rst, but as we have seen,
the third is also seen. How do we choose the appro-
priate event category? A measurement of zero object
motion relative to a background is insu¤cient to
correctly categorize the motion class of the square and
shadow.

(iv) Parameter estimation: where are the objects headed and how
fast?

Finally, a visual decision can be made as to where the
square is headed and how fast. In other words, given a
motion category or model, what values should be ¢t to
the parameters?

We could describe the last two types of visual deci-
sions as (i) ¢nding an appropriate model to describe
the category of motion and (ii) ¢tting appropriate
parameters to that model. Di¡erent types of measure-
ments reliably support di¡erent kinds of decisions
depending on the level of abstraction. What kinds of
image measurements can be used to support the deci-
sion regarding the player category, motion category or
velocity? The next section discusses the cues that
support shadow identity. The subsequent section
discusses a global cue that may be important for deter-
mining the event category of object/shadow pair.
Finally, the information required for velocity estima-
tion is discussed.

(b) Shadow and material categories for depth:
square-over-checkerboard

Kersten et al. (1997) discuss a number of local cues
that support shadow identi¢cation. For the square-
over-checkerboard movies, there was a particularly
diagnostic cue in the dynamically changing penumbral
blur caused by an extended light source. Such a local
image measurement has less ambiguity with other
scene causes (e.g. it is likely to be confused with a mate-
rial change, although it could result from surface edge
motion out of the depth-of-¢eld range, or a spreading
stain). This cue is also robust over viewpoint and a
large range of types of illumination. In contrast, the
sharp shadow is often seen as a transparent surfaceöa
decision supported by transparency constraints
(Metelli 1975).

Even if a shadow has been identi¢ed, vision faces the
problem of determining which surface it belongs to.
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This problem raises the possibility that vision may
sometimes make the decision that a particular event is
occurring and then determine the target object's
motion. Shadow identi¢cation may only be implicit.
The ¢ndings from the ball-in-a-box experiments illus-
trate this argument.

(c) Event categories for depth: ball-in-a-box

Above we noted that apparent motion of the
stationary square is sensitive to the speci¢cs of shadow
properties. In contrast, for the ball-in-a-box, an object's
cast shadow does not have to be physically reason-
ableöit can have the wrong contrast polarity or
lightnessöfor observers to see consistently di¡erent
motions in depth which depend on shadow trajectory.
Further although the shadow had a sharp edge, no
observers ever reported the shadow to appear as an
independent surface patch coincidentally moving
below the ball. Why do the ball-in-a-box demonstra-
tions produce a strong percept of motion in depth,
even when several properties of shadows such as
contrast polarity, and transparency are wrong? The
answer may be that the detection of a particular kind
of correlated motion provides diagnostic information
that an event category corresponding to an object/
shadow pair has occurred. The informativeness of
correlated motion depends on the assumptions of a
stationary light source and a general viewpoint. A
stationary light source implies that the line connecting
the shadow and object always terminates at the ¢xed
light source. This constraint is preserved in the image
projection and thus de¢nes the correlated motion. If
the light source is at in¢nity (as in the ball-in-a-box
movies), the line makes a ¢xed angle in the image. If
the light source is at a ¢nite position, the line sweeps
through an angle anchored to a ¢xed location in the
image plane (¢gure 5).

The interpretation of this correlated motion is robust
over viewpoint. There are competing events (e.g. the
ends of a stick moving rigidly in space) which could
under some circumstances (swinging pendulum)
mimic object/shadows, which seem less likely, but may
pose some ambiguity. Although correlated motion may
provide a low-ambiguity initial index to object/shadow
pair, knowledge of this event does not indicate which
image patch corresponds to the object and which to
the shadow, nor does it specify where the object is
headed. Shadow identity could be resolved by assuming
that the light source is above, and thus the lower region
is the shadow. But we still require knowledge of the
shadow location to compute a unique depth trajectory.

(d) Where is the ball heading? parameter
estimation

Figure 6 illustrates some of the geometric ambiguities
present in the ball-in-a-box movies. Three pieces of
information that constrain the ball's location are (i)
the location of the shadow; (ii) the direction of the
light source; and (iii) the viewpoint. The ¢rst two
pieces of information constrain the ball to be on a line
between the shadow and light source. The third speci-

¢es a line from the eye through the ball. The
intersection of these two lines could, in theory, deter-
mine the ball's apparent position. Kersten et al. (1997)
showed that the visual system assumes a speci¢c ¢xed
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Figure 5. The correlated motion between an object and its
shadow. A ¢xed light source constrains the image of the ball
and shadow to lie along a straight line anchored at a point
which may be in the image, or beyond (as with the in¢nite
light source used in the ball-in-a-box simulations). When
observers view a smooth animation of a ball moving
through points 1, 2, 3 and 4, the ball ¢rst appears to rise
above the ground plane and move away from the viewer
(points 1, 2 and 3); however, at point 3, the ball appears to
bounce back towards the viewer. This apparent nonlinear
trajectory persists even though the trajectory of the ball
has a constant velocity in the image, and the ball has a
constant image size.

Potential
light source
directions Eye

Potential
shadow locations

Potential ball locations

Floor

Figure 6. The positional ambiguities in the ball-in-box
shadow scene at a given moment in time. Once the light
source direction is ¢xed, and the dark region is categorized
as a shadow (and therefore on the £oor of the box), the
height of the ball above the £oor is determined. As long as
the light source is assumed to remain ¢xed, the trajectory of
the ball is determined over time. (Reprinted from Kersten et
al. (1997).)
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(albeit incorrect) light source position. But what infor-
mation determines the location of the shadow? Local
photometric constraints could contribute to labelling a
region as a shadow, which is by necessity on the
receiving surface. But photometrically wrong shadows
have no signi¢cant e¡ect on the apparent trajectory.
Another source of information is the non-accidental
alignment of the canonical axis of the shadow patch
with that of the £oor. An economical explanation for
this coincidence is that the shadow and £oor are
coplanar (cf. Richards et al. 1996), thus resolving the
remaining ambiguity required to compute the position
and trajectory.

5. DISCUSSION
(a) Knowledge required for spatial layout

We have used three types of knowledge to resolve
ambiguity in the perception of depth from shadows:
(i) prior assumptions (e.g. stationary light source)
provide high probability default constraints; (ii) image
information constrains the category of a local image
patch or motion event type (changing penumbral blur,
correlated motion); and (iii) the visual task determines
the category as well as the generic variables over which
perception's model of the image data should be robust
(e.g. correlated motion with respect to viewpoint).
More speci¢cally, vision may resolve ambiguity in
spatial layout by incorporating knowledge at several
di¡erent levels of abstraction de¢ned by categorical
structure. Categories would serve several functions.
First, because they are task-speci¢c, category decisions
provide the means to reduce the complexity of treating
vision as a full-blown inverse optics problem in which
one explicitly estimates all of the scene parameters.
Second, categories abstract properties (e.g. opaqueness
or shadow) which are su¤cient to determine `player
roles' and thus relative depth relationships. Exact
values of re£ectance or transparency are not needed
for such inferences. Third, it makes sense to use image
information to support a reliable high-level category
decision (e.g. correlated motion for an object/shadow
event), when such information is not immediately (i.e.
bottom-up) and reliably available for the estimation of
speci¢c parameters (e.g. 3D velocity of the ball).

(b) Con¢dence-driven perceptual decisions

Thinking in terms of the reliability of image
measurements for visual decisions regarding categories
cuts across the usual debate of bottom-up versus top-
down. Instead, one asks what image measurements are
g̀ood features' for various classes of categories. A strong
hypothesis is perceptual decisions are c̀on¢dence-
driven'and it is the quality of the image data that deter-
mines the level of abstraction that is ¢rst accessed. At
any given time, vision has a set of image measurements
and a set of hypotheses spread over various levels of
abstraction. Fast visual decisions (bottom-up) are
those for which the probability of a category condi-
tional on the image feature is su¤ciently high as

compared with the probabilities of the alternatives at
that level. A category commitment signals a ¢rm
conclusion upon which early (less abstract) but more
ambiguous decisions can subsequently rely via the top-
down £ow of information.

This work was supported by the National Science Foundation
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